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2 Magnetostatics Basics

The LEB magnets will operate in iron-dominated, resistive regimes. [n the current-free
region inside the beam tube, fields can be described by Maxwell’s equations as follows:

VXE:—%—?ﬁV-B:O, VxH=0 (L)

where B = poH. H (and thus B) can be expressed as the gradient of a scalar potential
V or, alternatively as the curt of a vector potential A: .

ol = —VV, B=VxA (2)

Away from magnet ends fields are two dimensional; A and V satisfy the Cauchy-
Riemann equations A, =V and V] = —A,, and can thus be represented as the real and
imaginary parts of an analytic function F of the complex variable z = z + zy:

F=A+V | (3)

It follows directly from Eqns. (2) and (3) that the complex conjugate B*(z) of the
field is analytic in z and is given by:

.dF

B*(z) = i— ‘ (4)

_lt is convenient to expand the complex £€afar’ potential F in a power series about a
point (say z = 0) and analyze the ‘harmonic’ components:

Fz)=3 ({i)c B > (f;) " e (5)

n=1 P n=1 Tp

\.fvf.tere rp is the magnet aperture radius (— half gap & for a dipole). For magnets
.exhnblting midplane symmetry, the coefficients ¢, = a, + ib, are pure real (or pure
imaginary if A, rather than V, is constant along the midplane). For symmetric multipole
magnets (i.e. rotatable by 360°/2m with 2 change of polarity), of order m (eg. m=1
for dipole, 2 for quadrupole, etc.) the complex potential F and flux density B*(z) are

w [, m(2n-1) 0 m{2n—=1)~1 (2 1
F(z) =3 ("‘) Um(on-1); B 2) =1, (;_) m(2n — 1)am(zn-1)
: F '

n=1 Tp n=1 Tp
(6)
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DESIGN OF PERMANENT MULTIPOLE MAGNETS .
WITH ORIENTED RARE EARTH COBALT MATERIAL*

K. HALBACH

University of California, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A> ‘ e

Received 20 Augﬁsx 1979

By taking advaatage of both the magnetic strength and the astounding simplicity of the magnetic properties of oriented rare
carih cobalt material, new designs have besn developed for a number of devices. In this article on multipole magnets, special
emphasis is put on quadaupoles because of their frequent use and beczuse the aperture ficlds achievable (1.2-1.4 T) are rather
large. This paper also tays the foundation for futurc papers on: (a) finear arrays for use as * plasma buckets™ or undulators for
the production of synchrotrun radiation; (b) structures. for the pmducuon of solengldal fi dds- and (c) thm-dlmnszonal

structures such as helical undulators or multipoles.

1. Introduction . S
For some applications, the most important of the

“many advantages of permanent magnets is the fact,

that they can be made very small without reduction
of magnetic field strength. In conventionally  pow-
erfed magnets, the current density in the coils is
inversely-proportional to the linear dimension, lead-
ing to insurmountable cooling problems and atten-
dant reduction of field strength as size decreases.

We will discuss new designs that, with the
currently available oriented rare earth cobalt (REC)
material, produce, in some devices, fields that are
as strong or stronger than fhose achievable with
conventional magnets of any. size.

Thus, REC magnets will have a performance

: advantage over conventional magnets regardless of

size, shifting the decision between the two to differ-
ent areas, such as convenience of strength adjust-
ment, price, etc.

' The advantage of REC is not only its strength, '

but also the simplicity of its magnetic properties.

This simplicity makes REC systems easy to under- .

stand and to treat analytically, which in turn !eads
directly to improved designs. For this reason, we
devote some space to REC properiies, and how
they can be best described in the magnetostatic
equations, despite the fact that these properties
have been known by workers in the field since
Strnat') started the development of REC.

For the sake of completeness, we include similar-
ly the derivation of some theorems that are, at least
in principle, textbook material, but are used so

* This work was supported by the Los Alamos Scientific Labo-

ratory and the Lawrence Berkely Laboratory of the US Depart- .
- and B* are in the customary fashion identified by

meal of Energy under contract No. W-7405-ENG-48.

mfrequent!y tl;at they cannot be expected to be at

the ﬁngerups of most readers '_ P

P

2. Basic formulae, notation

For three dtmens:ona! (BD) ca]culatlons we use’
the standard Carwsman coordmates X, ¥a 2. Most of
the two dimensional (2D) calculatxons are done ‘with
complex numbers that are identifi ed_ by underlining
the symbols. Spemﬁmliy 7o ,c[c_fjned by
z=x+iy=re'*, with i*=—1. The complex conju-
gate of a quantity is indicated by an astérisk.

In a vacuum region, the two dimensional field
components B,, B, (or H,, H,) can be derived from
either a scalar potential V or a vector potential that
only needs to have a component A in the z direc- -
tion: -
B, = d4fdy = —&V}ix, (1a)
B, = —d4[{ox = —oVfdy. (ib)

The relationships between the derivatives of A4 and
V are the same as the Cauchy—Riemann conditions

.of the r?al and imaginary part of an analytical func-

tion of’the complex variable z, i.e., the complex

potential £(z) =A +iV is such a function, and if we -
use B=25,4i8, to describe the twe-dimensional

vector B, it follows from eq. (1) that

B* = idF/dz 2

is also an analytical function of z. The field at
location z,, generated by a current filament, /, at
focation z, is gwen by -

Bt (zo) =def 1

21:1 Zo—Z )
The coeflicients of the Taylor series expansion of F

&)
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2

the subscript of the expansion of F:
F(zo) = Y. 025 ' (4a)
n=1

B*(zo) = Z b,z5""; b, =ing,. (4b)
The same exparisions, but w1th n <0, will be used
to describe fields in the region radially outside the
magnets. MKS units are used throughout, with
=4 X107 VsA~ m"

i Propemes of R.EC

3.1. THE MANUFACIURING Paocsss . :

To get & rough understandmg of the ressons for
the REC properties described in section 3.2, we
describe very briefly the major steps in one of the
major manufacturing processes_used today to pro-
duce REC. For details, the reader is referred to the
book by McCaig?). .

After a molten. mlxture of roughly ﬁve (atomlc)
parts cobalt to onie. (atomlc) part of some, rare earth
metal(s) is solidified by rapid cooling,” 3 crushmg
and milling process produces a powder that consists
of particles with linear dimensions of the order of
5 pm. 'Ihese grams are thagnetically highly aniso-
tropic, “wanting”™ to be polarized only along one
crystalline direction. The powder is then exposed to
a strong magnetic field and subjected to high pres-
sure, causing the individual grains to. physicaily
rotate until their magnetically preferred axes are
parallel to the applied field. These aligned blocks of
material are then sintered, and machined or ground
if necessary. Finally the material is exposed to 2
very strong magnetic field in a direction parallel or
antiparallel to the previously established preferred
direction, orienting practically all alignable magnetic
moments  along the direction of magnetization,
commonly called the easy axis. The property that
makes REC so valuable is that this magnetization is

very strong, and that it can be changed in a
- substantial way only by applying a strong field in
the direction opposite to the one used to magnetlzc :

the material.

3.2. Tue B{H} reraTionsdie ofF REC

The relationship between By and f) in the direc-
tion paralle! to the easy axis is schematically shown
in fig. . The most important characteristics of the
Bi(Hy) curve are the following:

(a) It is, for all intents and purposes, a straight
line over a very wide range, with a typical slope

dBi/dHyuo = pty ~1.04- 1.08. The point where the
slope becornes mgmﬁcantly larger depends on the
details of the manufacturing process, but is usually
well  within the thidd quadrant, at —Hy/
Ho=1.5-2.

(1) The offset of the Bu(Hu} curve from the origin,
the remanent field B,, is typically 0.8-0.95T, with
the coercive field gof. about 4-8% less than B,.

(c) As long as one stays ont the straight line part
of the By(y) curve, moving along the curve does

not change this straight line.
In the range of interest here, the relationship

o bctwcen By and H. can be reprwcnted by:
By = oy Hy+B, - B (52)

or, with y=1/u:
Hy =7y n/ﬂo—H (Sb)
In the dlmcuon perpendicular to thc ea.sy axis,

the relationship between B, and. H o s, o a very
good approximation, described by: 77

B, = FOH.I.‘I'B (H.L!HA)

or, with - ‘ .
gy = lh’z =" 1+BrlﬂoHAv
B, = pop Hy. s ' ©)

The hxgh degree of amsotropy of good materia
manifests itself in the large values of the anasotropy
field p,H.: typical values are 12-40T, giving
values of 1.02 to 1.08 for g, , and eq. (6) is usually
valid up to several Tesla.

Aside from the REC material dlscussed so far,
resin bonded REC material is also available, with
qualitatively the same properties, but lower values
of B, and H,. Some of the oriented ferrites also
have similar properties, but with B, <0.35T and
largcr values {2 1.1) for the permeabilities x and

Thc designs discussed in this paper can also be

B,

l‘wl‘

Fig. |. B{f}<curve in the direction parailel to the easy axis.

i
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FERMANENT MULTIPOLE MAGNETS 3

implemented with these materials; we always refer
to REC magnets because it is the unique strength
of the REC materials, combined with the other
properties described in this section, that will open
the door to new and exciting applications.

3.3. Descriprion oF REC PROPERTIES
IN THE MAGNETOSTATIC EQUATIONS T
"Equations (5a) and (6) can be combined into the
vector equation: LT _
B=g°ytH-§-B,. ‘, (7a)

In-this equation, B, is the vector with the magni-
tude of the remanent field B, in the diréction of the

easy axis, and g ¥ H = g Hispy Hy Eqs. (5b) and

(6) can be similatly combined into ¥ -l an
He=yeBlig=H. 1 ' = "
If we derive H from .a scalar potential : we have to
satisfy div B =0, yielding .with eq. (7a} ~: . -

div(uopeH) = p = ~divB,, = (82)
If we derive B similady from a vector ‘potential, we
get from.eq, (7b) and Ampeéres law . .. .. .
cutlys Bfpy = j = curl H, . 2T o -: (8b)

The anisotropy of the material shows up in two
different ways: in the inhomogeneous terms on the
right sides of egs. (8a, b), and in the slight anisotro-
Py associated with the weak differential pérmeabili-
ty of REC. Because the permeabilities are so close
to one, we assume, unless stated otherwise, that
#yp=p, =1. This very good approximation, togeth-
er with the assumption of constant H, and B,,
means that the material can be treated as vacuum
with either an imprinted charge density — div B, or
an imprinted current density curlH,. This in tum
has the consequence that the fields produced by
different pieces of REC superimpose linearly, and

* that they can be calculated with fairly Iittle effort

when no soft magnetic material is present. It should
be noted that in the case of homogeneously magne-
tized material, ie., H,, B, =const. within the mate-
rial, curl H, and div B, are zero everywhere except
at the surface, where one encounters delta functions
that signify the presence of current sheets or charge
sheets.

3.4, CALCULATION OF THREE DIMENSIONAL (30)
FIELDS PRODUCED 8Y REC

In the absence of soft material, we derive the

field at the location outside the material from a .
" lent of eq. (12), because jt expresses the field by an

scalar potential,

H(rg) = —grad V, ) ‘ 9

with ¥ given by an integral over the volume of the
material:

#o V{rg) = ZI— £(r) d (10$)

n | {r—ry| .
In the case of a tiomogeneously magnetized REC
picce, one has a charge sheet at its surface. With
€q. (8a) one therefore obtains in that case ¥ from

an integral over the surface of the material:
1Ll H-da H J’ da

ST T TR ey

r=rol. . @b

For our model, B, = Kol has beenusedA partic-
ularly appealing property of this formula is the fact
that the integral is independent of H..

" For the case of continuously varying K., we use,
with K(r) == 1/lr—ry| the identity . - .. B
PKlpo = —K divH, = H, grad K~di¥(KH )
Because H, =0 outside the maierial,

'[ div(KH) do = ;l";r'cz'f;-da' =0

With

grad K = —(r—-—ro)/ir—-roj",

we obtain

p=_L Mdy_ ' (12)
4z |"—"o|3

3.5. CALCULATION OF TWO-DIMENSIONAL 2D)
FIELDS PRODUCED BY REC
For a REC assembly that is sufficiently long in
the z-direction and whose magnetization vector B,
has no z component, the fields outside the material
can, in the absence of soft steel, to a good approx-
imation be described by:

* s i
with
MoJ = 8B,,/0x—aB, [dy. - (19)

We have again used Bo=pu. M.

It is shown in the Appendix that eq. (13) can,
without restrictions on B, =8,+iB,, be written
as
B* =1 & dxd 15
_(Zo)—z—n‘ Gc‘:zzxjh (15)

This formula can be considered the 2D equiva-
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integral that contains the magnétization itself, and
not a combination of its spatial derivatives.

Equation (15} has a property that is highly signif-
icant for many applications: if two REC assemblies
are identical, except that in the second system the
easy axis is rotated everywhere by the angle +j
relative to the easy axis orientation in first system,
then the right hand side of eq. (15) for the second
system equals that of the first system, but is multi-
plied by €. This allows us to state the Easy Axis
Rotation Theorem. — If in a 2D, soft—steel free,
REC system all easy axes are rotated by the angle
<+ A8, then all magnetic fields outside the REC rotate
by the angle —f: without a. change in amplitude. ~
Fig. 2 illustrates this theorem: The -theorem is
qualitatively easy to understand if one realizes that
each volume element of REC produces a dipole
field for which this theorem is valid for obvious
reasons. .

For a homogeneously magnet:zod piece of REC,
8, can be taken outside the integral in- eq. (15)
Integratmg first over x, one obtains:

A (162)

Zo—2Z

Integration over y first yields

*(z0) = — 2y - .
B(z0) = — 57 papart (16b)

and egs. (16a) and (16b) can be combined into

* . B, dé"*
B = ~ o P (16)

The last three equations are given because, depend-
ing on the geometrical shape of the REC piece, one
of these integrals may be easier to evaluate than the
others or the integral in eq. (15).

Equation (16b} [and similarly eq. (16a)] can also
be derived by using the current sheet model for a

Fig. 2. Effect of rotation of easy axes on magnetic field.

REC piece with its easy axis parallel to the Xx-a;
and then invoking the easy axis rotation theoren

To calculate fields inside the material, the techr
ques developed in ref. 3 can be used. We summa
ize here only the resuit for the case of a homoge:
eously magnetized piece of REC: by first removi;
a circular cylinder of material around the point 2
any one of the egs. (16a—c) can be used, with 2
integration path as shown in fig. 3. (Notice that t}
integrals over the straight lines cancel.) To obtai
8%, one has to add the contribution 8./2 caused by th
removal of the cylinder. To obtain z, H* iaside.th
material, one has to use g, ff*=B8*-B%

Even though it is possible to write down exphcn
Iy the fields produced by .the multlpole magnet
discussed below, it is more convenient, and give
more insight, to use the Taylor expansions -intrg
duced in egs. (44, b). To obtain the expaision coef
ficients, one.has to use in eqs. {léa—cF~— .- _

1 - —;—1 ) . . . .
2o & - . ugx-_‘_z—“_" - .o : (l?a
and f'or use in eq. (15) one obtams by dlﬂ‘crentm
tion of eq. {(17a):

1 Azt ¢
(zo—2) #=1 z"“ ' ' .
For a field expansion -radially outside the magn.
one has to use

-2 _a—1 N
L _ 5y B : C T
Eg—Z . r=0 Z
and ‘ .
- 75 L
( ‘) Z B _ ((8b
f0—Z a=-1 £

4. REC multipole magnets

4.1. MULTIPOLES WITH CONTINUOUS
EASY AXIS ORIENTATION
To produce a strong 2¥—multipole magnet with
good field quality, one wants to arrange the REC in

Fig. 3. Integration path for calculation of field inside the F
material.
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such a way that in €q. {4b), by is targe, and that ali
other b, are as small_as possible. Using eq. (18a) in

eq. (15), we abtain

" B
.1.)« == = da.
2x Z.+! -
With B,= 8,6, and 7 =rei*, we get

" Beexp{i[B(e)—(n+ )]} ,
Bl 2 rdrdp.  (19)

b==2

"2z : o+t
From this equation follows directly that the largest
possible real p, is obtained by choosing

Ble) = p(N+1). . o @)

" Equation (19) also shows the expected fact that a
piece of REC contributes the maore to the multipole
strength the closer it is to the point z=0. .

If the space between the two circles [zl =¢, and
lzl=r, is filied with REC, with B, a constant and
B(@) given by eq. (20), 5,=0 for n#N, giving for
Eo’ <fl i

\N-1 : =gy -
*@y=(2) g N [, _(n
FGa) = (r,) Bw—_"l[‘ (?) ]

’ for N2>72: (21a)

B%(z0) = B,In(rofr)  for N = I. (21b)
Inspection of the field for Izl >r;, using eq. (18b)
tnstead of eq. (183), shows that the field outside
this multipole magnet is exactly zero.

. The fact that « recipe™ eq. (20) leads to a
perfect multipole is not surprising when one realizes
that as z direct consequence of eq. (20), the current
density j [in eq. (8b)] inside the material has only
the component Je=H N +1) sinNp/r, with the
current sheets§ at the inside and outside boundaries
of the REC aiso being proportional to sin No.

Equations (21) were given for N~ 1,2 by Blewett)

in an unpublished report in 1965, However that
report does not mention the anisotropy of the mate-
rial, and Consequently does not give the design
recipe represented by eq. (20).

The multipole just discussed obviously produces
the strongest and cleanest multipole field possible
within a circular aperture of a pure REC multipole
with a given amount of material. A study of the
field inside the material shows that one can find
closed curves that are perpendicular to H every-
where. Replacing the material inside such a closed
curve by soft stee! with very large permeability will
reduce the amount of REC without significantly

changing the field in the aperture. It is my subjec-
tive judgement that the potential savings are o0
small to be worth the resulting complication of
construction in the case of Strong multipoles, and
this avenue has therefore not been pursued jn the
study of the segmented multipoles.

Since the above mentioned steel contours can
range into the aperture region, this approach can be
used to design multipoles that have steej poles
coatrolling the field in the aperture and use fairly
little REC. However, with the exception of dipoles,
those magnets have weaker pole tip fields than the
pure REC multipoles. While it is my opinion that
incorporation of stee| ‘into the design will qot
increase the upper limit of the achievable multipols
streagth, given by eq. (21a),'I have no proof for
this assessment, '

In. order to Ratisfy eq. (20), We require _strong
magnetic fields during the alignment.proeess<ith a
distribution of local direction given by- eq. (20}
Since a 2D vacuum field satisfying that condition
must behave like B*~1/24+1in the region of inter-
est, it is highly unlikely that one can produce REC
with precisely the desired easy axis distribution,
particularly for small magnets. Fortunately, the
segmented magnet design discussed below has a
performance very close to that of the ideal REC
multipole.

4.2. THE SEGMENTED MULTIPOLE MAGNET

To get a reasonable approximation to eq.. (20), we
segment the magnet into M geometrically identical
pieces such that, ignoring the direction of the easy
axes, the structure is invariant to rotation by the
angle 2z/M about z =. Throughout each piece,
the easy axis points in the same direction, but that
direction advances (in the Xx—y coordinate system)
by (NV+1)2n/M from one piece to the next. This _
means that refative 10 a coordinate system fixed in
the piece, the easy axis advances by N2#a/M from
one piece to the next.

Using egs. (17), (16¢) and (4b), b, produced by
one such piece can be ‘expressed (for both positive
and negative #) by

*
b, = sgn(n)f-’—'# gz’ @2)

- L Zz

If the contribution to b, coming from a reference
piece is C,, then the contribution from gz piece
rotated by a relative to the reference piece is

G et Wl ginined) hare the first exponential fac-

‘tor comes from the rotation of the easy axis by
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&(N+1), and the second factor from the integral in
eq. (22). With = mzrch we get for the whole

assembly

N-1
b,=C, Y exp [lznm(N—n)/M]

m=0
If (N—a)/M is zero or a positive or negative integer,
the ‘sum equals M. If (N—n)/M is not an mtcger
the geometncal senes 1s zero, yielding -

B*(zo) -—MZC_ L. n=N+vM. (23)
Dependmg whether one wants to. know the fields in
the aperture region or. outmde the magnet, one
takes the sum over e:ther positive or negative a. .

Figure 4 shows the geometry .for a trapezoidal
reference piece that is bisected by the x-axis and

whose magnetization is characterized by B,. . We

allow discussion of a smaller than maximum possi-
ble angular size (ZJrIM ) by making the angu!ar size
of the reference plece g2xiM. ..
. For.n>0, C,. is most easﬂy obtmned by usmg
eq.-(17a) in eq. (16b). Usmg ‘the Iatter C in

eq (23) gives:

l - -‘ .
*(20) = By T li-(-
_'B (2"0) Er 'go ("1) n—1 [ (rz
n=N+vM .

sin{nexfM)
nn/M

n a—1
(n—l [1"'(’1!"2? )--—-1

For the geometry indicated by ‘dashed lines in
fig. 4, i.e., for circular arcs of radii r,, r; (gle inner
and outer boundaries) C, is most easily calculated
‘with egs. (15) and (18a),.and X, in eq. (24a) has to
be replaced by

sin[(n+ 1) enfM}
(n+DrfM -~
It follows from eq. (24) that for a given B,, and

K, = cos"(en/M)

=la(rsfry)

K,= (24b)

Fig. 4. One piece of a segmented REC multipole.

for # = N > 1, there always exists an upper limit
the field strength at the magnet aperture, while .
the dipole this upper limit is controtled in essen:
by the By(Ay) curve in the third quadrant,
Comparison of eqs. {(24) with eqgs. (21) show
that the fundamental harmonic of the scgmente
multipole is smaller by a factor Ky than the equi
alent ideal REC multipole and that for £=1 ap
comes close to the ideal strength if the number ¢
REC pieces per period.
M' = M/N, (2

is equal to or larger than eight.

In the somewhat unusual case that one elects t
use a small value like 2 for M, it follows in gener:
from eqs. (15) and (18a) [and specifically, of course
from eqs. (24a,b)] that X, is largcst not whcn
equals ong, but for . R

_ M _ . M! . - - -
EEIN+D T QN

provided this value is smaller than one.

From egs. (24a,b) we can extract the ampiitud
of the field due to the harmonic n=N+vM rela
tive to the amplitude of the fundamental . For th
qualitatively representative case of trapezoidal R¥(
pieces, we obtain from eq. (24a) for that ratio (

at lzl =r, and for £ =1
M _ . n~1

Q(v) — (_r_) N 1 COS“MTII 1 (rl,rl) — (27

Ty n—1 T—(ryfr)" ¢

For r=r,, the values for Q(v) are uncomfortabl!
large. Fortunately in most applications the larges
r/r, of concern is, while close to ene, still smal
enough so that the factor (r/r,)"* reduces Q(v) t
acceptable levels even for the most unfavorabl
case, v =1. Should, however, Q(1) be larger tha
acceptable, Q(1) can be made to vanish by choos
ing

(26

-

e = YI+N/M) = 1—1[(1+M"). (28
For that._va'}ue.of g, Q(v) becomes -
P\ N—1 . L.
() = (?:_) w1 8 emfM x
xlsinm v—1 sint z ®
[+M| 1+M
m-1 N-1
RCAECH I
) T2

For reasonably large values af M, it is unlikely
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the worst of these harmonics (7 =N+ 20 will ever
cause any problems.

The design represented by eq. (28) means that
one has a wedge-shaped non-magnetic space be-
tween adjacent pieces of REC. While these gaps
could be implemented by having appropriate
notches in the magnet assembly fixture, an alter-
nate method of making Q(1) =0 would be the use
of a non-magnetic spacer between adjacent REC
pieces. For that kind of design it would be advan-
tageous to have spacers of uniform thickness D.
Referring to fig. 5 for the definition of the symbols,
application of eq. (16a) and (17a) gives for the field
in that case . - TRLEITT L, an o

zo)u—l COS&O COS“TIGI

FG) =2 (n (G VI

r=g

x_[sin[ao+azl(n-'—1)] -—’(;:T-CE:-;:_)H ‘
X sin[r.zo-!-a:z(n—i)]], S+ {30a)

Dfry = 2 cosay(tane, —tana,) ~ 2(xg—ay)fcos oy,
_ . (30b)
tana, = tan oy —(ry/r;) (tan ¢ —tana,). (30

To eliminate the harmonic n =N+M in the case
where the term proportional to /' in
€q. (30a) can be neglected, one has to satisfy

M=1

@ = {m—og}(n—1) = o, NTM =T (31a)
giving, with eq. (30,

N+M—1 cosafM"~

Formulas for reference picces with shapes other
than trapezoids are easily derived following the
same general procedure, but are not given here,
From these expressions follows the general rule that
the allowed harmonics # = N+ vAM tend 1o be the

SPACER

Fig. 5. One piece of a segmented REC multipole with Nat sheet .
spacer. )

smaller the better the inside REC boundary approx-
imates a circle.

To describe the fields (radially) outside the multi-
pole, we expand B* in 1/z5. By using egs. (17b) and
(18b) instead of eqs. (17a) and (18a), we get instead
of egs. {24a, b): : '

BYzo) = ¥ b_,z5""

L] r nt g " r nt |
=8 2 _ -]l
= ug;l é’o) nii : ("'2) J K=
n=vM-N (32a)
I . Si0 i exfM -
K. .= cc?s (enfM) W (Trapezoid).
K_, -3 [ s Lex/M] (circular ércs) . L. (32b)

T T (n=6wu[M

Equation (32a) is valid for |zl 5 rj/cos (ex/M) for
the trapezoid, and for lz)>r, for the circular arc
case. Without going into details, it is clear that at
these limits B(z,) is' somewhat sraller than it is at
Izl =r,. Since Agin=M—N = NM'-1), the field
decays very [fepidly with increasing Igoi.prpvided
that M is reasonably large. Shielding the space
radially outside the multipole against these fields
will therefore be rarely necessary. We therefore give
the expansion for the field perturbation caused by a
circular steet shell with 4 = « and |zl = R without
derivation: :

dgs:ecl(Zb) = ZJ. EO-I (b—u)‘/RZH

, (33)
n=—N+vM,

b, are the expansion coefficients of the unper-

turbed field in 1/z, as used in eq. (32a). Notice that
the fundamental (7 =AN) is not affected by the
shield unless M has the exceptionally fow value
2N

The results of this section show very clearly that
the following properties are important for the design
of 'a good segmented multipole magnet:

(1) the REC should be placed, with the largest
possible volume filling factor, as closely to the “bu-
siness™ region as possible, ** hugeing™ the aperture
circle as well as possible,

(2} In order to produce strong fields of high qual-
ity, one should approximate eq. {200 reasonably
well, with M’'=8 easy axis orientations per period
being a good guide number.

To arrive at a design. one hasto combine these
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two essential requirements with considerations like
availability, or ease of production, of REC pieces of
various shapes; ease of assembly, etc. Trapezoidal
segments, as discussed above, seem to be a good
choice, but it is quite possible that assemblies of
tightly packed small rods with circular, hexagonal,
or other, cross sections may be preferable under
some circumstances.

4.3. THE SEGMENTED REC QUADRUPOLE

Because of their special importance for accelera-
tors, we discuss some details of quadrupoles, adding
to the suramaries published elsewhere®€). Since
quadrupoles with trapezoidal segments are quite
typical, we restrict the discussion to this specific
class of magnets,

From eq. (24a) follows for thc fundamental har-
monic for e =1:

g*uo)=%s,2(1—i‘-)xzi o
D)

stTrIM o o , s
2xM '

Table 1 shows that in order to get a strong
quadrupole, one should choose M =12 or 16. The
gradients achievable with a 16-piece quadrupole are
impressive, particuiarly when they are compared
with those of conventional quadrupoles. For
M=16, ri/ri=4, (whlch is still quite compact) and
. B.= 095T (whlch is commercially available), one
obtains an aperture field of 1.34 T. in contrast, a
high quality conventional quadrupole is very diffi-
cult to make with more than 1 T at the aperture,
and even that is possible only for fairly large aper-
ture magnets. High aperture fields are of particular
importance for linear accelerators with small aper-
tures. For an aperture with r, =2 mm, it it possi-
ble to achieve a gradient B'=
diameter of such a quadrupole could be smaller
than 2cm. Clearly, it is impossible to achieve
anything resembling this with conventional mag-.
nets and conventional REC quadrupole designs fall
short of this gradient by at least a factor of 2.

Figure & shows a schematic cross section of a
16-piece quadrupole, with the easy axis direction
indicated in each piece. It follows from that

Ky= 0032( M) ——=—

TasLE 1
M= 4 8 12 16 20 24
K= 0.32 0.717 .89 0.94 0.96 097

6§ Tem™!, and the

g

AN

%

Fig. 6. Scherqatic cross section of a 16-picce REC quadrupole,

'diagram that one needs pieces with five differen

orientations of the easy axis relative to the trapezoi
dal shape to make this [6-piece quadrupole. If on
rotates all easy axes by 22.5° in the same direction
only four different piecés are required, which may
be advantageous for the manufacturer=Since on
has, in either case, 2 reasonably large number o
pieces that are supposed to be identical, it may be
advantageous to measure magnetization directior
and magnitude for each piece, and then assembie
the quadrupole in such a way that magnetizatior
errors do the least harm to the field quality, For
this reason, it may be a blessing in disguise *
with present manufacturing techniques, the indiv.
ual REC pieces are fairly small. This often force
the use of several layers of REC in the axial direc-
tion, increasing the number of pieces and therefore
improving the error cancelling statistics.

For a l6-piece quadrupole with r/r; =0.25, the

_first undesirable harmonic (7 =18) field has, at

[zl =r,, an amplitude that is approximately 6% ol
the fundamental [see eq. (27} for N =2). Eliminat-
ing that harmonic with a flat sheet of the thickness
given by eq. (31b), the first non-vanishing harmonic
is n =34, with a relative amplitude of about 3% at
the full aperture. The order of this harmonic is high
enough that no attempt has yet been made to alse
eliminate it.

The fringe fields at the end of a segmented
quadrupole (or other multipole) are fairly easily
calcutated by using the charge sheet model and
eq. {11). If the cross sections of the REC pieces are
trapezoidal, the charge sheets have rectangular cross
sections and the integrals can be expressed by
elementary transcendental functions, making the

3D field calcniation rather easy. The relevant

formulas are not reproduced here because the {ringe
fields of REC muliipole magnets have some rather
remarkable properties (to be- discussed in sect
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4.4) that make fringe field caiculations necassary in
Holsinger has built a prototype quadrupole with
ri=Llem; n=3cm; M=16; and consisting of
three 16-piece layers in the axial direction. Compar-
isons were made between -measurements of: that
magnet, computer runs of that magnet with PAN-
DIRA'), and the predictions made. with the simple
theory presented here. The results abtained with
these procedures agreed :very well with regard to
the amplitude of thesquadrupole field and - the
aliowed higher harmonic # =18. The- only signifi-
cant, but expected, discrepancy. was the presence of
the harmonics # = §,. 10, 14 in the computer model
and the real magnet, while'these harmonics do not
exist in the simple model that assumes zr; =uj=1;
Atlzl=¢ the amplitudes‘of these harmonics were,
relative to the quadnipole field, 0.2% " for n=6;
0.1% for n=14; and <0.1% for n=10. While
these errors ‘are so small that they ~are unlikely to
cause problems in most applications; ‘one can easily
imagine methods to_eliminate these harmonics, if
necessary. If, for instafice, one has 'a gap between
adjacent pieces for the elimination of n =18, one
would incorporate movable thin strips of soft steel
into these gaps to tune -away these undesired
harmonics. The real magnet also had an approxi-
mately 0.5% sextupole, as well as some other
muitipoles, present. Since the individual REC
pieces were not measured, it is expected that these
harmonics can be significantly reduced when this is
done and properly taken into account in the assem-
bly. Another obvious tuning method would be the
removal or addition of small amounts of REC at
appropriate locations, but it is unlikely that such
efforts will really be necessary. :

4.4. IMPORTANT PRACTICAL CONSEQUENCES OF
APPLICABILITY OF LINEAR SUPERPOSITION PRINCIPLE

It is obvious that the linear superposition princi-
ple is of crucial importance not only for specific
important theorems, like the easy axis rotation
theorem or the selection rule for possible harmonics
[eq. (242)], but to the whole mathematical descrip-
tion of REC magnets presented here. However,
there are some very important practical conse-
quences of the linear superposition principle that
are obtainable without any mathematical deriva-
tions.

We consider first the following combination of
two REC multipole magnets: one guadrupole iy
located, tightly fitting, inside the aperture region of

another quadrupole. If each of these quadrupoles
alone produces the same gradient, and both quadru-
poles are rotated about the common axis by equal
amounts in opposite directions, then the gradient in
the aperture can be continuously changed between
zero and twice the strength of the individual
quadrupole. By similarly pairing of two dissimilar
multipoles, one can make combined function mag-
nets.

Care has to be taken for these combinations of
REC magnets, and in particular for combinations of
conventional steel magnets with REC magnets, that
the REC is not driven into the.nonlinear part.of the
By(Hy) curve. .A combination of magnets that would -
be fairly :immune from this danger is a multipole
inside the momogeneous field of a coaxial solenoid,
since .in, this case the.solencidal field is everywhere
perpendicular to the easy axis, - . . - . < .

A different - method to. modify the ‘effective.
strength of a REC quadrupole would be to assemble
it from.quadrupoles of relatively short axial lengths
whose' quadrupole field orentations can . be ad-
Jjusted. While this would be fairdy easy to da, such a
scheme obviously modifies the optical properties of
the system in a non-trivial way, and this aspect of
such a system is currently under investigation®).

Another important application of the superposi-
tion principle is the treatment of the fringe fields at
the ends of multipole magnets. We deal here with
two distinctly different aspects of fringe fields that
are both very simple and important.

First we consider a multipole of finite physical
length L whose left end is cut off in an arbitrary
fashion, and whose right end is shaped such that
the left end would fit it perfecily, without formirg
any gap. (See fig. 7). Another way to express that
geomeury is to state that the length of REC along
any line parallel to the axis is either L or zero.
Keeping the left end of the multipole fixed in space.
we first consider the field quantity Gr.e.2)
produced by a semi-infinite multipole, with G,(r, @)
representing the 2D field deep inside where it does
not depend on z. Then the field quantity G(r. @, 2)

NN

/ /

Fig. 7. Geometry of specific finite length REC multipole.
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produced by a multipole of length L is given by
G(r,¢.2) = Gi(r,0,2) — G, (r,0,z—=L). -+ (35)
If we now calculate the optically important’

[Lowee o7 Ll

—o3

it is easy 1o see that'eq. GS) leads 16

oy
adr !

This equation says™nct only that the-effective
length for the fundamiental harmonic- of: interest
equals the phys:cal length of the multlpole, but also
that the integral oVer'd field quantity’ vanishes if
that field quantity ls‘iero inthe 2D cmss’sectxon'

- Next, we oons:der thc propertics ‘of the fringe
fields  produced - by"a-serm-mﬁmte miultigole, pro-
duced by cutting ‘anSinfinite’ mu[tzpole by the-x—y
plane at z =0 (see fig?'8), i.eZ we look at- thé fringe
field -function G(z)for -thé~specific” casc"‘bf the
“square™ end. If F{rip,2)'is the scalar®potential
produced by the ‘multipole located at z>0;ithen the
scalar potential produced by the mult:pole located
at’ z<0 must-be K, g =2 I Vo(r,of s the
scalar potential insidé’the infi nitely ‘fong muiltipole,
the following obv:ously must hold:. — ¥

hine2) + Wl 'P:—?-) F‘&(r.qv) e (37)

-------

Applying the appropnate Opera.tor to thls equatmn
to get the field quantity G,(, ¢,2) of interest, we
get, if no denvatwe wlth respect - to z is-invol-
ved:

G.l (r, ¢, Z) + Gl(r P, —2) Go(”-*?) 261(’.’ q’s 0)

G8)

From this it foliows that _
5
J G (r.¢,2)dz = Zt Go(r @) (39}

ifz is sufﬁcuently large. 'I'hls means that the effec-
tive boundary is at z=0, and that the fringe field
integrat over a field quantity vanishes if that quan-
tity is zero in the 2D cross section. Notice that this
statement is stronger than the one made above with
respect 10 eq. (36), which required mtegratlon over
the fringe fields of both ends.

e
e
e —————
Z

Fig. B. Ficlds at the end of a REC muitipole.

If the operator to obtain the field quantity ¢

iaterest is pmpomonal to (&‘/&z)"‘ we get instead o,
eq. (38)
G(rne.z2}= ~(-1)" Gz(r @, —z). (40)
Integrating this G{r, @,2) over the fringe field
region gives zero when m 2, but not necessarily
when m——l

Append:x
Using eqs. (14) in eq (13) one of the two inte-
grals that have to be evaluated in eq. (13) is

s 1 [ aH_jox
1= = m“dfz-.:.;.

Canymg out thc mtegratton over x first and mtc-
grating by pa.rts one obtams S

e :
I _i dxd
YT Jze—z Zm_’-(,g—-z) N ._y

Included ‘in the mtegrat!on aréa”is a thm strip of
vacuum outmdc the REC.H,=0 there, so that the
line™ mtegral over y vamshw Applymg the same
techmque to the other mtegml necessary t‘or lhe
evaliation of the. mtegral m eq. (13) one obmms
eq. (13). S . .

* I would like to thank J. A. Farrel! T.D. H
ward, E. A. Knapp (Los Alamos Scientific Laborz™
tory) and R. L. Gluckstérn {University of Maryland,
for their active interest, support and discussions of
this work. K. Strnat very kindly proofread the
section dealing with the material production and
properties.’

M. Kaviany (Lawrence Berkeley Laboratory)
made some useful computer runs and R. Holsinger
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Abstract—Expressions for fields due to a point charge
in 3D and due to a line charge in 2D are compared.
Extensions to dipoles are made with emphasis on the
relationship between dipole orientation and field com-
ponent magnitudes, Differences between the effects
on fields of dipole rotations in 2D and in 3D are high-
lighted and formulas for maximizing individual field
components are given. A final macrogeometiry exten-
sion is made and a closed-form expression is developed
to calculate the field due to an arbitrary 3D configu-

ration of permanent magnet (PM)} blocks. The field

optimization theory is applied to the design of the
ALS elliptically polarizing undulator (EPU). Utilizing
3D field enhancement, peak on-axis fleld in practical
designs can be increased typically by 5% to 40% or
more over their 2D counterparts. The theory is gen-
erally applicable to any pure (J.e., no soft magnetic
material) PM design.

.I. INTRODUCTION

The theory of pure permanent maguet (PM) design in
two dimensions has been described thoroughly {1,2]. De-
sign of both nominally 2D pure PM structures, e.g., lin-
early polarizing undulators, and inherently 3D pure PM
structures, e.g., Sasaki-type [3,4] planar elliptically polar-
izing undulators, can benefit from the extension of these
concepts and optimization techniques to ®°. Herein, the
PM material with g = 1isrepresented by magnetic charge
sheets on surfaces [5,6].

II. PM POINT CHARGES AND DIPOLES

A. Point charge.

In £° the scalar potential and field from a point charge
g [G-cm? located at ry = (24, Yy, 27) are, respectively,

17V (r) = gffr— 1, 47B() = g(r —r,)/Ir — 1, (1)

Manuscript received June 13, 1995,

This work was supported by the Director, Office of Energy Re-
search, Office of Basic Energy Sciences, Mat. Sei. Div., of the U.S.
Dept. of Energy, Cnntracl: No. DEACDE-TSSFDUDQS

For a line charge of strength ¢’ {G-cm®/em] per unit
length in z, the field is 2D and is given by

47B(r) = v/m. ¢(r— rq)dz =

—tx Ir - 1';,!3

2¢'(z

— g Y~ Yg)
e —rg |2 -3

The field conjugate is an analytic function of the complex
variable t = z + iy B*(t) = B, —iB, = ¢'/2n(t — t,).

B. Dipole. -

Extension to a dipole, where at r, point charges of

‘'strength +¢ separated by ! are oriented {See Fig. 1.} via

direction cosines 7, = (cos x, cos ¥, cos ), gives in 3D:

Bz (r})
4rfr, — rf® z
o (B ) = ®
B:(r)
252 — g2 — 22 3zqu LE cos x
3494 22 — 52— 22 3-’1';2? cos i
3242, 3Fqzq 2i2 ~ 22— 93 cos &

where #; = z,—z, etc. For 2 permanent magnet ¢ = B, -a,
where B, is the remanent ficld and a is the surface normal.
For a line dipole of strength ¢’ = B, -a’ in 2D:

2xliglt  Bz(r) \ _ f #2242 2% gfs cos Y
q'l By(x) ] T\ 2849, iz — 27 cos ¢

Since A, = ¢, field conjugate B*(t) = ¢'le** /2x(t, —t)2.
Note that for a 2D line dipole oriented in, say, the z-
direction, there is no B, component at r = 0 when that
line ¢harge is located along the line y, = ;. At this
location, this orientation also maximizes B,(0,0). This
contrasts with the 3D case of a point dipole so oriented,
which gives rise to a pure By component on-axis at z = z,
when it lies along the hne ¥p = +V2z,, though at this
location By (r = 0) is not maximized by this orientation.

C. Fasy azis rotation.

In 2D,ldipole rotation by an angle Ay has the effect of
rotating B by —Ay, while |B| remains unchanged [1]:

0018-9464/96505.00 © 1926 [EEE



X
fig = (cos x, cos 1, cos §) = (sin 6 cos ¢, sin fsin &, cos§)

Fig. 1. Direction cosines of dipole at ry = 0

q.r 1t (x-+8%)

g b . LK 7.5 N —- —{Ay ‘
2f(fq --—t)3 Ble M Bz Ble . (5)

:

This 2D easy-axis rotation theorem implies that dipole
orientation maximizing a field component nulls the or-

thogonal component. In 3D, without loss of generality, ’

coordinates can be oriented such that the peint of inter-
est is at the origin and the dipole is at (0, 0, z,). On-axis
field B(0) is '

(4723 /g)B(0) = (—cosx, —cos¥,2¢cos8).  (6)

In contrast to the 2D case, in 3D the magnitude [B(0)]
can vary by a factor of two, depending on the dipole ori-
entation, being largest when the dipole is oriented in the
direction of v — ry:

(x3/gDBO)] = V3co20 £ L. @

Rotation of the dipole by A, in the z-y plane leaves
B;, {B], and the sum BZ + B? unchanged; individually,
B and B, are proportional to cos ¢, and sin ¢y, respec-
tively. Rotation by Ad, in any plane containing the z-axis
leaves the ratio B:/B, unchanged; both B, and By are
proportional to sinfé,, B; is proportional to cosd,, and

1Bl ox +/3cos?d + 1. (See Fig. 1.)

D. Mazimizing field components.

The formulas above are useful in determining the opti-
mal orientation of magnetic moments in space to achieve
a desired 3D field distribution. For example, in 2 3D pure
PM stracture, using |fl,| = 1, on-axis B, = f{cos ¢, cos &)
and is given by:

4 5
Ll;?l-B,(D,U, 2) = 3z,y,/1 — cos? ¢ — cos2@

+ (297 — =% — 22) cos ¥ + 3y, 5 cos . (8)

Fig. 2. ALS EPU periodic structure

It is maximized for 7, given by:

cosy
cos¢ | = [(3::\231,;)2 + (2y§ — :.'3 - .23)2

cos
3:,;{.,

+(3yg2,)% " ? ( 22 — 22 — 22 ) (9)
3y.2,

Thus to maximize on-axis By(0,0,z), easy-axis orien-
tation of a dipole at, for example, location 2z, = z and
{+1,0,0)

' z,=0
{ 2y§iz§=0 } is ﬁq={ } {10)
yq-—'.'-n (01_130)

At the other extreme, as Z; — oo at any (z,,v,), the
easy-axis oriemtation of s dipole that maximizes on-axis
By(0,0,z),is cosyp = —1L.

Implications for pure PM ID design are tremendous.
Oge can increase on-axis B by ~ 20% in the inherently 3D
ALS EPU structure (X = 5em, gap=1.8cm) by rotating
the PM easy-axis as one moves off-axis in z. (See Fig. 2.)

On-axis fields of conventional linear polarizing pure PM
devices also can be increased dramatically by taking ad-
vantage of this third-dimension easy-axis directionality
optimization. For example, for pure PM IDs of gap-period
ratios of 0.5 and 0.07, 4 blocks-per-period, and block
height L = A/2, maximum B, of a practical structure
utilizing easy-axis orientation variation in the z-direction
(with just three rows of blocks in =) increases by 5% and
40%, respectively, over their 2D counterparts. (See Fig.
3.) For large period devices, peak fields greater than 2.5T
are achievable. Finer subdivsion of blocks can in principle
more than double these percentage increases, but man-
ufacturing and assembly becornes increasingly cumber-
some. If fabrication simplicity is paramount, peak on-axis
field can actually be inczeased beyond the 2D “ideal’ field

(0,+1,0)

—2—



Fig. 3. Linear polarizing pure PM device with 3D field
enhancement (one of many possible discretizations)

by merely truncating the PM blocks in the z-direction,
since easy-axis orientation for maximizing peak on-axis
B, rotates through 180° as the z-coordinate of the dipole
location varies within the interval 0 < z; < co.
Maximization of B: = f(cos ¢, cosf) is analogous:

5 .
L 5.0,0,2) = e} - f - VA = oo P = costd
(1

+ 3z,y; cos ¥+ 3z43, cosd.
It is maxinized for §,; given by:

casd

222 — g2 — 52
= y21—12 7,77 7
+(3z,5,)7] Seeyy |- (12)
3z,2,
Thus to maximize on-axis B; (0,0, z), easy-axis orien-
tation of a dipole at, for example, location z; = z and

z,=10 (—1,0,0) .
{ 2z7—12=0 } is :'j,:{ 0,+1,0) } (13)
Y =0 {(+1,0,0) '

cos X
( oot/ ) = [(227 — 97 — £ + (3z,%,)°

At the other extreme, as £, — oo at any (z,,y,), the
easy-axis orientation of a dipole that maximizes on-axds
B.(0,0,2),is cosx = —1.

IIl. PM BLOCKS & PERIODIC STRUCTURES

The field B(x, y, z) due to a uniformly magnetized block
can be determined from a charge sheet model over the
block surface where g = B, - a, where B, is the remanent
field and a is the magnet’s surface area. Referring to
the PM block in Fig. 4, charge sheets may exist or any
of the block’s six faces, depending on the magnetization

'y
Yok d 4 c
1 PM 2
5,6
YT a 3 b
e
Tq Tygs

Fig. 4. PM block crientation and surfaces

orientation [5,6]. For a positive charge sheet on a single
face:

4w u—u .
& Bulz 1, 2) = f Ir—_""l“daq:
dz g dy,

Br r? [3
dz.dz, } . (14)

z
dag = ; Bell Y
dygdz, z

whete ¥ = z,y, or z. Summing contributions from the
individual faces for each PM block in a system yields the
vector components of B at any arbitrary location(s), e.
along the axis in a pure PM undulator. For blocks whos.
surfaces are not parallel to the cartesian axes, onme can
always perform coordinate transformations by axes rota-
tion; thus the development herein is completely general.
Two types of integrals must be evaluated: those where
the charge sheet surface normal and the caleulated field
component are parallel (a, % fj5, = 0) and when they are
perpendicular (a, - fig, = 0). {See Appendix A for solu-
tion details using either varible substitutions or Green’s
theoremn.) The first integral type is:

4 -
—t-B,.{z, v,z = f / l?:liadugdvg = O1{ug, vg) = (15)

In ( [i‘:q: + |’:?¢("g_g Vg Wolllffg, + |Fq(2tqy, vgys “’q]ﬂ)
[Uﬂl + Iri(uh! Vgas w?)ﬂ[ﬁ!: + Ir!(uf:u Y4, w!)[l

where u is the cartesian coordinate of the field component
of interest, with u, v, w each being any one of the cartesian
coordinates z, ¥, 2. The normal to the charged block sur-
face is parallel to the w axis and is defined by the region
wy=coustant, ¥y, < ug < t,,, and vy, < vy < vy, Br
is the surface charge sheet density and |[Fq(uq, v )| =
V{ug — u)? + (v, — v)? + (wy — w)?. The second integral
type is: .

4 —f, - . :
S B = [ [ Zitdi,du, = Osu) = (10)
T 7



Tip, T By, tir
arctan | —— Yqy Way +aretan [ —— 01 Wan )
"‘q!rQ(“q’”ﬁquJl “qqu(“qr’-’canufq:}[

—arctan | —— Yo gy )-—arctan ( — Fa3 %04z )
u?[rQ(uQIv‘nrwth uq[r@(uﬁvﬁswvz)[
where u is the cartesian coordinate of the field component,
the block surface defined by the region u,= const., vy, <
Ug < Uy, and wy, < wy < 1w, is normal to the v-w plane.
The field in 2 3D structure of PM blocks, then, is

S o ) (17)
LY el
5 B_f (x)

2. 01y, 2,) +3, O2(yy) +22. O1{y,, 24) ) '
22 0ul(zg,3,) +2,01(z0,2) +3, O2(z)

where the summation ¥, is over all charge sheet surfaces
whose normal is paralle] to the z axis, ete.

In the expression in Eq. (17), there is a singularity in
the logarithm when 3, = —|4]. These singularities occur
in pairs and can be handled numerically taking the limit:

(-:-1'—‘-:—\/_2___5_ ":2;‘_‘:2) =In(b/a).  (18)

We have used the 3D optimization techniques of the
Pprevious section to design the ALS EPU shown in Figure
2, using the closed-form expressions of this section. Pro-
gram CPU [7] allows input of multiple rows of periodic
arrays of PM blocks with specified magnetization orienta-
tions to rapidly calculate fields anywhere in the gap region
of the proposed ALS EPU.

Having two blocks in each quadrant enables another
beneficial design feature, i.e., a thinner vacuum chamber
wall, and thus smaller magnetic gap, over the portion of
the chamber directly above/below the beam axis than oth-
erwise possible with 2 uniform-in-z chamber thickness due
to strength limits. This further increases the attainable
peak on-axis field. Note that with the 3D field enhance-
ment, field rolloffin z is rapid, thus complicating focusing
effects.

(2: Oa(z,) +2,01(zg,5) +3, O1(zq, 4g)

lim In

IV. APPENDIX A: INTEGRAL DERIVATIONS

For the integral type of Eq. (17), using Green’s theorem
and noting that B, = ~8V/8z = 9V /8z,, gives

4 _ —z, 47 av
E:Bz(zsy:z)"/‘/’]};i#qdyqu“‘s_r// 'é;;dﬂ:?dyq

4..“. 4:!. L~ £
= E:ngdyq = B (/3 deq+'/; deq) ,  {19)

4

where points a,b,¢,d are shown in Fig. 4. Integral
contributions along a-b and c-d are zero since v is constant
along these line segments. Integrating Eq. (21) with ¥
given by Eq. (1) yields Eq. (17). Alternatively,

L

Yaz
4 _ Fez Zq _ﬁL
_B:B::[:I;y, z) = j—-’l;; (fg +‘éq2) Fi'qf) dzs. (20)

Now

( E, ) 1 / dp
246 \/IE P P*=(ca—cy)

~ Ver—ci+ /22 + e
= 1 - In ! . (21)
V2 — Cf f1f5§+cl
where p= /22 4+ ¢z, ¢; = Ef, and c3—~¢; = §7. Making
the substitutions again yields Eq. (17).

Similarly, for the integral type of Eq. (18),
4 Zeg . 3 Yoo
i = [ ({2 M dn,. (22
roer)= [ () ()] e @

Ya

Now

[ (7)== o
2+¢ ‘/2? g R Pez—cr)+ e

1 (=] -
__macmﬂ(p”g—l’, (23)

where p = 3,/, [22+ 2, € = a‘::, and cz - ¢ = §2.
Making the substitutions yields Eq. {18).
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Sec.6.4: PERMANENT MAGNET MATERIALS
64 PERMANENT MAGNET MATERI-

ALS
R.D. Schlueter, LBNT,

{See also Sec.7.2.5.)

PMs generally used in accelerator magnets
ate the rare earths, NdFeB and SmCos, SmyCory
The magnetic properties of

or ferrites, FeyOs.
these materials are described by

By=Br+ pup Hy (B >0), By =pgps, H,

(D

where || and 1 tefer to the “easy” axis direc-
lion, py is the permeabiiity of free space and .
K, g1 are the dimensionless relative permeabil-
ities (see Fig.1). Typically (4, | — 1} < 0.1. Uni-
formly magnetized PM material thus can be rep-
resented as 4 passive material with penmeability,
1,1 plus gither active currents or charges on PM
surfaces parallel or perpendicular to B, respec-
tively, Magnetics effects of PM blocks are saper-
pusable io the extent that any iton in the sysiem

does not saturate, Eq.(1) describing PM material
behavior are valid in the second quadrant of the
B-H curve; linearity extends near to or somcwhat
into the third quadrant, where there is a “knee” in
the curve. Operation beyond this knce Irreversibly
changes material properties and is to be avoided.

ot

Ko ligH,

LT R Y T RS |

P ]
8355450

Figure 1: Petmanent magnetic maerial B-f7 behavior
parallel and perpendicular to the magnetization direc-
tion.

NdFeB and SmCoj or Sm;Coq7 magnets are
employed to achieve high fields in compact mag-
ncts. NdFeB PM blocks have the highest avail-
able strength, lypicaliy B, = 1.1 -14T aiid co-
ercivity po b, = 1.0 - 13 T, NdFeB is readily

366

Table 1 Typical properties of PM materialg

froperty NdFeBT Smio [ T
B, TT} IT-109° ¥
KA (T] Lo- T 0701
I3 1.1 _§ 035
o fy [ ) P
1.10 1.03 1.07
38, [oT [eideg.C) | - O.I0 [~ 0.0 | =@
H, /0T [%ideg C] |~ 040 | -0F [0
T ldeg. C] ?g R =200 IR
T [82g €T | 350 T 800
¢, kg degC] 0T 330 .
- i 835
¥ [WinK] 6.4 110 -3 !
O ¥ 07 deg C] [ - 04 11713 10
ar,u* {IO{I deg.C] ki B -9
P L] 75 | 34 35
P, [107%52-cm] 200 .1 >T07 ]

* directional thermal expansion Coefficients —

nachinable, but its temperature stability and py.

diation resistance {1, 2, 3], though often accept- .

able, are inferior 1o those of the samariom cobaj
magnets. NdFeB magnets have expetienced sig.
nificant strength loss after €xposure to neutron flp-
ences of as low as 10" n/em?. (See also 3.3.8)
PM materfals exhibiting higher remnant fields,

B,, usually experience irreversible flux loss a

lower temperatures and the knce occurs earlier in
the third quadrant; thus one needs to be aware of
the potential for demagnetization both in the fina]
design configuration and during magnet assein-
bly [4]. Typical costs are $5/cm® or $150 per 2
vm x 4 cm x 4 cm block used in a PPM or hy-
brid muitipole or insertion device, Typical easy
axis (i.e. magnetization vector) orientation error
and block-to-block magnetization uniformity are
1° and 1% BR,, tespectively. Tab.1 displays typ-
ical NdFeB properties, Major NdFeB suppliers
include Sumitomo Special Metals Co,, Shin-Etsu,
Vaciumschmelze and Ugimag,

For SmCo;, or SmyCoj7 one has B, =09-
11T, i, =0.8-10T It is more brittle than
Nd¥eB, but exhibits better temperature stability
and radiation resistance I5, 6. It is thus used
in more rugged thermal and radiation environ-
ments but attainable field strength is somewhat
lower than for the NdFeR magneis. Typical cost is
$5/cm®. Tab.1 displays typical properties of this
material. Major suppliers include Shin-Etsu, Vac-
uumschmelze and Ugimag. '

Ferites are much cheaper ($0.02/cm®). Their

ant field and coercivity are 0.20 - 0.44 T and
11]:5“- 0.35 T respectively and thus are not used
(;r compact, high field applications. However,

iheir low cost makes them especially suited for

Id applications, Larger, high field hy-
lq%c;cf\ir?ces fsri.ng ferrites are also feasible. Such
!n; nets comprise the dipoles, quadrupolcs': an,d
. ;Ebiued function hybrid magnets in Fermilab’s
;‘JGEV transfer line and recycler ring {7, ?]. These
meterials exhibil no magnetic degr‘adauoq up to
750°C, enabling bakcouts witheut insulating th.e

anent magnet material. A disadvantage is
(heit high temperature coefficient, - 0.20%/°C,
sometimes necessitating some fo?m of tempera-
fure compensation or cnntro]_. Magor suppliers in-
cude Crucible Magnetics, Hitachi and Amold,
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6.5 PROPERTIES OF LOSSY MATE-
RIALS
M. Tigner, Cornell U.

General Several UHV compatible materials are
now available for absorption of microwave en-
ergy. They range from resistive pasies that can
be fired onte a ceramic substrate through ferfltes
to “artificial” dielectrics in which mi.cr(.m slzed
dissipative maierials are dispersed within a ce-
ramic matrix serving to concentrale the fields at
the dissipating particles. Secveral types qf U?-IV
compatible microwave loads, on-beam-line flnd
off ling, have been devised, some capable of kj_lo-
watts dissipation. The material for on-beam-line
loads must have a finite do resistivity for charge
drainage. ; '

I ! . " . al
Physical properties Tab.l displays pl_lysm.
pro{lerﬂes of typical ferrites and artificial di-
electrics.

Ch.6: ELECTRICAL CONSIDERATIONS
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Fipgure 1: (a} Ree, vs freq., ferrites. (b} Ime, vs freq.,
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50

46

42 3

m ‘.\

24 i)
30

26

n

18 o] cl

4

t 15 2 25 3 35 4 45 3
f(GHz)

Figure 2: e (%} and 100tané (4) for AIN-40%5iC.

30 f

= %
|

5 2 3 4 5 &

(GHz)
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Electrical properties Figs.1 4], 2 [5] and 3 [6]

display the electricat properties of these materials
as a function of frequency. The ferrites show ab-
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Radiation from an insertion device

Magnet poles

AN INSERTION DEVICE has
permanent magnets of alternating
polarity that cause electrons moving at
nearly the speed of light to follow a
sinusoidal path perpendicular to the
magnetic field.
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Pure Permanent Magnet Harmonics Corrector Ring

R.D. Schiveter, D). Humphries, and J. Tanabe
Lawrence Berkeley Laboratory, Berkeley, California 94720

Abstract—A concept for creating any desired har-
monics mix in & pure permanent magnet (PM) cor-
rector ring is presented. Useful for nulling various
harmonies simultaneously, such a device is versatile
for many accelerator applications. The harmonic mix
can be changed without redesign or replacement by a
new ring or parts and, if desired, can be accomplished
in-situ via remote control of rator motors. Harmonics
suppression of greater than a factor of 100 or even 1000
are possible; exact functional dependencies of harmon-
ies suppresion capability versus magnet geometry are
given. Sensitivity to positioning and corrector ring
PM errors sre given, and shown to be themselves nul-
lable.

I. INTRODUCTION

Presently, much effort is put into designing magnets
with tight harmonics specifications. In the case of electro-
magnets this entails laborious attention to iron/coil design
geometry and often tedious and costly experimentation
of end chamfers and designs. In the case of permanent
magnets, block quality, sorting, and, positioning must be

carefully controlled. Furthermore, in both instances these

factors limit the attainable level of field quality achievable.
The theory of pure PM design in two dimensions has
been described thoroughly [1,2]. Here we present a con-
cept niilizing a PM corrector ring, insertable at any de-
sired location in the beam path, capable of providing any
desired harmonic mix. The present application is to null
the harmonics of the Q2 septum quadrupole for SLAC’s
B-factory. Herein, the PM material with g = 1 is repre-
sented by magnetic charge sheets on surfaces [3,4].

II. FIELD FROM HOMOGENEQUSLY
MAGNETIZED PM CYLINDERS

In 2-D, the field at location z = z 4 iy due to a cylinder
of permanent magnet material of radius r. centered at

First Draft: Nov. 26, 1995. Second draft: March 22, 1996.
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PM cylinder

- Fig. 1. 2-D geometry for a arbitrarily positioned and
oriented PM cylinder (beam axis is into paper, ¢ is
maghetization direction w.r.i. horizontal, & is the
integration angle w.r.t. horizontal, and 8 = § — ¢)

z. = z + Re'*? with uniform magnetization By = B,e'? is
given by [5] (See Figure 1):

. B, [* r.cosd B.et . \?

B (Z)_21r o z—zu(ﬁ)dé_ 2 (zc—z) » (1)

where B, cosf(d) is the equivalent magnetic charge den-

sity at the point on the cylinder surface zo(6) = z,+rce'?,

0 <6 < 2. The derivation is given in the appendix,
The integrated field, I*(z) = [ B*(z)dZ, along an

axis (Z) parallel to that of a lone cylinder of length L is

- o3 e B er o nzn—1 ;
I-(z) = Z baz = 1"2 . Z Z0 e ¢: (2)
n=1 n=]

where the infinite series on the right is the multipole ex-
pansion of Eq. (1) about z = 0.

Using two independently rotatable cylinders each of
length L/2 placed end-to-end, arbitrary met magnetiza-
tion orientation and strength are achievable by rotation
and counter-rotation, respectively, of cylinders in a pair.
The effective magnetization orientation of the cylinder
pair is adjustable by rotating both cylinders an angle ¢.
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Fig. 2. Pure PM harmonics corrector ring (beam axis at
z = D is into paper at center of ring)

The effective strength ¢B.L of the cylinder pair is ad-
justable by subsequently counter-rotating cylinders an in-
cremental angle :

eB, L =cosnB,.L (3)

For M cylinder pairs spaced uniformly in azimuth (see
Fig. 2) B = m2x/M,0 < m < M — 1, with net mag-
netization directions ¢, and strengths ¢, the multipole
expansion coefficients about 2 = 0 of the integrated field
become

M=1 )
bu=kn 3 e+, (4)
m=0

_ B, Lnrf

where k, = W; ¢"‘.

D = fme"
Equivalently, in matrix form:

b= [K][T]p, (3)

where [K] is a diagonal matrix consisting of the elements
kn, [T] is a matrix with elements T}, ,, = e~ (" +1)f~  and
P is an M-element vector quantifying the net orientation
and strength of each of the M cylinder pairs.

III. CREATING AN ARBITRARY MULTIPOLE
MIX FOR FIELD CORRECTION

To produce a given b, the required p is given by

p=[T17 "&b, (6}
where the elements of [T]™? and [K]™? are

1k, ifn=1

1 Hn+1)sm fag. -1 _
T;,n e JM; Kn,! —{ 0 otherwise ™

Thus required orientation and strength of the m cylin-
der pairs are given by

P = €net® = Zei(“'*'l)p“bﬂ/Mkﬂ. (8)

Let error fields in a magnet be characterized by the
multipole expansion a la POISSON Code® format:

re=i 5% Few (i)N-l, o

T.
N=N; P L4

where the complex ex [G-cm?] = syef®V. Setting da-n
of Eq. (8) equal to the negative of the N error coefficient
isye'e~ /rl of BEq. (9), the N-pole error term of any ac-
celerator magnet may be nulled in an adjacent coaxial
harmonics corrector ring consisting of M cylinder pairs of
effective length exf, and magnetization orientations de-
fined by ¢, , given by

' 2 N-1
enE = Now 2 (E) (—}i) , and (10)
ro. MNB. \r. Tp

Sw = (N + 1) +oen — % = (N +1)Bm + doy-

To null a single multipole term N, the effective length
en, L of all M cylinder pairs in the corrector ring are iden-
tical. Nulling of an arbitrary number of multipole terms
is accomplished by a vectorial superposition, per Eq. (8).
Effective lengths e,nL of the M cylinder_gairs are then
different, but none are larger than LY nen™ " en: =

N=Nmax
Lepei®m = L z eneitma
N=N; )
where the “N” are the mulipole error terms to be nulled.
Nulling an N-pole term in the corrector ring will in
turn introduce higher order multipole errors, per Eqgs. (10)

and (4):
neiqan,;P-l \™
Rntl ; -

I'(2) = B,eN;Mrf i
n=N+vM
(-] n—1
n (rpynW (_)
n=.NZ+uM N (R) rp

where v = 0,1,2,...,00. The first Ni,.., Njnee terms of
Eq. (12) (i.e., with ¥ = 0} are the negative of those that
were to be nulled from Eq. (9). The corrector ring should
consist of more cylinders than the highest harmonic cormn-
ponent to be nulled, ie., Nnq- < M, otherwise nulling
the highest terms would introduce lower harmonics. Field
contributions from the newly introduced error terms start
with the n = N + M term and are relatively small com-
pared with the original N-pole error term (i.e., where
v = 0) that was nulled. For each of the nulled error terms
N, at [z] = r; the ratio f of newly introduced error terms
to the corresponding nulled term is:

(11)

-—-iNCN
Tp

(12)



N+ v M\ pro\eM
I *;1( N ) (%) (13)
The largest term is where N = 1, and occurs when
v=1ifr,/R< ([1+M]/[1+2MDVYM (=~ 96 for M = 16),
yielding a reduction factor '

f=01+M)(r/RY™. (14)

IV. PRACTICAT DESIGN ISSUES

A. What level of harmonics reduction is possible?

The number and radial placement of cylinders necessary
to achieve a desired level of harmonics reduction follows
from Eq. (14).

For the Q2 magnet, assume original B field quality at
the normalization radius r, = 4.5 cm is good to 1072 in
all barmonics, and that we desire to make it 10~%. For
specified stay clear radii r; = 5.0 ¢cm and r; = 6.4 cm,
choosing for scenario (1) M = 16, B = 5.7 ¢m, and
r. = 0.7 cm, appropriately otienting cylinders would null
the N=1 harmonic (as well as others) and would intro-
duce 2 new N = 17 term that contributes a field equal
to 39% of that of the original N = 1 term at +,. For
scenario () let M = 16, R = 5.9 cm and r, = 0.5 cm,
yielding f = 22%. Correction strength capability goes as
r2r)~1/RN¥1; thus the N = 1 term strength correction
capability of scenario (#i) is only 48% of that of scenario
(7} and marginally less for higher harmonics. Scenario (#7)
yields a harmonics reduction factor of 5, still far short of
the factor of 100 sought.

More effective in the radially restricted Q2 case is in-
creasing the number of rotors. For scenario (#ii) let
M =32, R = 57 cm, and r, = 0.7 ¢m, resulting in
f = 1/58. For scenario (iv) letting M = 32, R = 5.9 cm,
and r. = (.5 cm, gives f = 1/176. For the latter design,
which more than meets the harmonics reduction criteria,
cylinder packing factor 2r.M/27R = 0.86, leading to a
1.6 mm spacing between cylinders.

For some instances of quadrupole magnet correction,
N = 1 and N = 2 terms need not be nulled, in which
case minimum harmonic reduction is ~ three fimes better
than that of the above scenarios (See Eq. (13).) In cases
that are not so radially restricted, much greater harmanics
Tejection factors are attainable via decreasing rp/R {(e.g.,
for M = 16 and r,/R = 0.5, f =~ 1/4000}, though at the
expense of harmonic strength nulling capability.

B. Wkat magnitude of harmonic can be nulled?

The length of cylinder pairs to achieve a desired har-
monic strength nulling capability follows from Egs. ( 10)
and (11). Assume a level of g% N**-harmonic at r, must
be nulled, i.e., N.S‘N/TP = U.OquNfSNJ. /’7‘?, where Np is

the fundamental harmonic and the & are the harmonics
to be nulled. We have

0.01gy N 2 g\ N1
el = INVyon, 2 (E) (E) . (18)
o MNB, \ r. T

For the Q2 magnet, 253/r, = 55800r, G-cm. Assume for
instance that harmonics N = 1,3, & 4 with magnitudes
gy = 1%, 0.5%, and 0.25%, respectively at r, = 4.5 cm,
must be nulled and other harmonics are neglighle. For
the parameters of scenario (iv} and with B, = 10,000 G,
required lengths from Eq. (15) are: en=1L = 2.19 cm,
€N=3L = 0.573Q3€N:1L, and fN=4L = 0.564Q4EN=1L.
From Eq. {11), if the regular/skew mixes were such that
all three ¢.,, were identical for some m, the required
effective length of that longest cylinder pair would be
3.2 cm.

It is not feasible to use the harmonics corrector ring to
null the high order aliowed harmonics occuring in a PM
device (e.g. the N = 18 harmonic of a2 16-block PM Q2
quadrupole); these can be nulled or made negligible rather
by spacing of the PM blocks 1] (an 11% space penalty),
by employing finer block segmentation (e.g. 24 blocks in
the Q2 magnet itself), and/or by reducing the ratio rp /ry.

It remains then, to be sure to conservatively estimate
the magnitude of uncorrected harmonics (i.e., ¢% of the
fundamental} so that the capacity, i.e., the length L of
the designed corrector ring to null them is sufficient.
In general, for a given corrector length L, there is a
tradeoff between attainable harmonics reduction factor
f (Eq. 13) and nullable harmonic magnitude Nsy/rp
(Eq. 10). Larger M and R/r, lead to a better harmonics
reduction ratio f, but lower the maximurm nullable har-
monic magnitude (assuming Mr, is constant). Nonethe-
less, as illustrated above, both impressive rejection ratios
and large absolute magnitudes of nullable harmonics are
simultaneously attainable.

C. What if the harmonic miz to be nulled changes?

If the mix of harmonics to be nulled is known and ex-
pected to remain invariant, a corrector ring can be de-
signed using cylinders of different lengths per Egs. (11)
and (10). Altetnatively, inverting the same matrix of
Eq. (5), cylinders of different radii squared r?_ (or B,,
were they available) could likewise be employed. Invert-
ing a different mairix, variable radial position R, could
also be employed to null harmonics.

However, the beauty of the counter-rotating cylinder
pairs scheme is its flexibility; arbitrary cylinder pair net
magnetization strength and orientation allow changing
the mix of harmonics to be nulled without resorting to
ring or parts replacement. Alternatively, several correc-
tor rings of a standard cylinder pair design can be utilized
to null a different error harmonics mix in a series of nomi-
nally identical magnets. Furthermore, this robust scheme



provides for self-correction as shown in the following sec-
tion. The counter-rotation scheme can also be employed
with blocks havirg other shapes, e.g. with square PM
cross-sections inside a machined cylindrical sleeve to fa
cilitate rotation, and/or with a different gecmetrical ar-
rangement of tuning blocks.

A uniform temperature excursior wil! not alter the har-
monic mix of either an accelerator magnet or its com-
panion corrector ring, though it causes a field magnitude
change in both of equal percentage. Thus it will not aﬁect
harmonic corrector ring performance.

D. Would correcior ring shielding affect performance?

Corrector ring shielding creates *additional (virtual)
field sources as images of the originals. A dipcle or
PM cylinder of strength and orientation p, = €pei®m
at location Re’~ in a device with an mﬁmtely per—
meable annular shield of radius R, centered at z = 0
will produce an image source of strength and orientation
fm = Em(R,/R)zei(zﬁm_¢m} at B,etfm where R, = R*/R
and where it is assurned that r./R < 0.1.

Nulling an N-pole term in the shielded corrector ring
will introduce further error terms, in addition to those
gwen by Eq. (12). Using the ¢m, given in Eq. (10),

Eq.(8) gives the coefficient for a single nulled multipole
in terms of the uniform effective Iength ¢n and reference
orientation g,

by = MkEyeneitor, (16)

Error terms created due to image sources, from Eq. (4) -

are:

2(n-1)
R) . an

bn:vM—N = M'EnEN‘g—{qsoN ('ﬁ'

'S

where v = 0,1,2,...,c0. Field contributions from the
image source related error terms start with the n = M —N-
term and are relatively small compared with the original
N-pole error term that was nulled. For each of the nulled
error terms NV, at [z| = r, the ratio f of image source
induced error terms to the corresponding nulled term is:

F= Y (el Wen/=  (8)
n=sM~-N

iz, oo v L R v M-N-1) .\ vM=2N

e G e 1¢) R R

* The largest terms are those for which v = 1 and they in-

crease with V. Thus one must choose M and radii R, R,,
and r;, such that the rejection ratio f is sufficiently small
for the highest order terms to be nulled as is the case for
scenario iv above.

V. POSITIONING SENSITIVITES AND
IMPLICATIONS FOR HARMONICS

Ha.rrnomc mix sensitivities due to a perturbation §P in

(1) radial position Ry, of the m'? rotor pair,

(2) azimuthal position B of the m*® rotor pair,

(3) angle ¢ of magnetization of the m'® rotor pair,

(4) length L., of the m** roter pair,

{5) cosine of separation angle 5., ‘between magnetiza-
tion directions of the two cylinders comprising the
m* rotor pair,

(6) cylinder radius squared r2 of the m*?

(7) remanent field strength B, of the m®

is given by (using Eq. (2)):

dI'(z) & re V' e }°
sP— _Z{ Rm) B’“L"’(Rm)

n=1

rotor pair, or
rotor pair,

-1

e (#m—{n+1)8m} £ 19
} _ (r§> ’ (19)
where for
([ R (~n[n+ 1]/2)(6 Rm/Rem)
P (—n{rn+1]/2)é8m
bm (in/2)6¢m
P={ Lnm, 9n =< (n/2)(6Llm/Lm)
COS Jm (rn/2)6 cos gy,
2 (n/2)(672. /72
. Br.. (n/2)(6B,,, /B...).

The kernel of Eq. (17) in brackets {} are merely new
in¢, frp terms which themselves are nullable via new
€N L, fm, contributions, calculated from Eq. (10), which
when added to the previous summation in Eq (11) yield
new L. and ¢,. Thus, the corrector ring is capable of
self-correction!

The magnitude of the corrector ring perturbation-
induced harmonics are directly calculable. For the pa-
rameters of scenario (iv) and with B, = 10,000 G, L,;, =
5 cm, and a perturbation §P/P = 1% (or §P = 0.01 1ad
when P represents an angle or §P = 0.01 when P rep-
resents cosfm), the contribution at |z| = r, of the new
N = 1 term s;/r; normalized to the Q2 fundamental
Ny = 2 term is 3.59/251000 = 0.14 - 10~* for P repre-
senting R, or Bn, and half that amount for the other
perturbation parameters.

The largest multipole contribution at |z| = r, for P rep-
resenting Rn, or Bm, which occurs at the integer nearest
the harmonic

n = 27.?,. , 18 (ns)m‘m =

1=y e

o+ 1) or, /007
((lr_t L aeta =5 (20)

times as large as the N = 1 term, where 7, = r;/R. For
scenario (iv) rp /R = 4.5/5.9 and {(ns)ma /151 = 5.5, thus



the largest harmonic contribution at |z| = r, normalized
tothe Q2 fundamental is 0.77-10"% for 6 R,/ Ren 01 8f8m =
0.01. Actual deviations of these parameters should be
much smaller than 0.01 and thus self-correction of these
harmonies is most likely unnecessary.

For the other perturbation parameters the largest mul-
tipole contribution, which oceurs at the integer nearest

5 (o (1-Fp))
7 s fp

n=—=

= (21)

s
times as large as the N = 1 term. For scenario (iv)
rp/R = 4.5/5.9 and {ns)naz/1s; = 1.8, thus the largest
harmonic contribution at |z| = r, normalized to the Q2
fundamental is 0.13 - 107 for 8¢m, 6Lm/Lm, 8B _ /By,
§r2 fr2 , or §cosnm = 0.01. These contributions are
negligible compared with the target harmonics level of
1-10~* and need not be corrected if actual perturbation
parameters §P/P or 6P == 0.01.

VI. SUMMARY

The pure PM harmonics corrector ring described herein
enables nulling of an arbitrary harmonic mix in an acceler-
ator magnet. For the B-factory’s Q2 septum quadrupole,
relatively high harmonic magnitudes (~ 1% @ 7,) can be
nulled with a compact (~ 5 cm long) corrector. For Q2,
high harmonics rejection factors (> 100) are attainable
with reasonable device design complexity (32 PM cylin-
ders). For other magnets, harmonics rejection factors of
over 103 are possible, limited only by the corresponding
absolute strength nulling capability of 2 specified correc-
tor length. Flexibility for infrequent in-situ harmonics
mix changing is easily incorporated in the design and is
accomplished by manual rotation and counter-rotation of
cylinder pairs. Likewise, several corrector rings of a stan-
dard cylinder pair design can be utilized to null a different
error harrnonics mix in a series of nominally identical mag-
nets. Frequent in-situ harmonics mix changing is possible
¥ia remote control of rotor rotation. Harmonies intro-
duced by positioning and magnetization errors are them-
selves nullable in this robust device. Finally, the need
to get the requisite field quality directly from shimming,
shaping, or positioning the companion accelerator magnet
is obviated, simplifying fringe field design compensation,
parts tolerancing, PM quality isssues, etc. :

This concept of an independent arbitrary harmonic gen-
erating/nulling device embodied in the inexpensive, flexi-
ble, robust, high-strength PM design provides a powerful
new tool for wide application in accelerator design, tun-
ing, and harmonies suppression.

VII. APPENDIX A: INTEGRAL DERIVATIONS

Eq. (1) becomes, with § = § — ¢; zp — z = Re'® + re'd:

B 32X+ cos#
()= o T TefoSE g
BE=5 ) ==®

(22)

-5, -/’2’r ro(cosécos ¢ + sin ésin ¢)a’§
2r S, Reif 4 pefé ’

Defining Z = r.e*? it follows that dZ = iZd§, 2cosé =
ZfrerrfZ, 2isiné = Zfr. — r.tZ, and

er oy Bri [ cos H(Z? +r2) — isin @(Z% —r?)
B(z) = Z{E’fg Z2(Z + Re') az
Bi e—id ei¢rf
=T PR T g renyt (B

The pole at —Re'f and the double pole at 0 lie outside
and inside, respectively, the circle Z = r.e*¥. Thus from
Cauchy’s integral formulas it follows directly that

)
(=)
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(Z¥ ReP)z

B, 1

B (z) = ir

(O + 271

_ B.rlef? _ B gi¢
- 2(ReiF)? T2

(29)

We are happy to thank Klans Halbach for teaching us the
magnetics fundamentals on which this work is based and for
proffering the succinct matrix notation used herein.
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